Abstract

We exploit InSb’s magnetic-induced optical properties to design THz sub-wavelength antennas that actively tune the radiative decay rates of dipole emitters at their proximity. The proposed designs include a spherical InSb antenna and a cylindrical Si-InSb hybrid antenna demonstrating distinct behaviors. The former dramatically enhances both radiative and non-radiative decay rates in the epsilon-near-zero region due to the dominant contribution of the Zeeman-splitting electric octupole mode. The latter realizes significant radiative decay rate enhancement via magnetic octupole mode, mitigating the quenching process and accelerating the photon production rate. A deep-learning-based optimization of emitter positioning further enhances the quantum efficiency of the proposed hybrid system. These novel mechanisms are promising for tunable THz single-photon sources in integrated quantum networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.