Abstract

AbstractAtomically dispersed metal‐nitrogen sites show great prospect for the oxygen reduction reaction (ORR), whereas the unsatisfactory adsorption‐desorption behaviors of oxygenated intermediates on the metal centers impede improvement of the ORR performance. We propose a new conceptual strategy of introducing sacrificial bonds to remold the local coordination of Fe−Nx sites, via controlling the dynamic transformation of the Fe−S bonds in the Fe−N−C single‐atom catalyst. Spectroscopic and theoretical results reveal that the selective cleavage of the sacrificial Fe−S bonds induces the incorporation of the electron‐withdrawing oxidized sulfur on the Fe centers. The newly functionalized moieties endow the catalyst with superior ORR activity and remarkable stability, owing to the reduced electron localization around the Fe centers facilitating the desorption of ORR intermediates. These findings provide a unique perspective for precisely controlling the coordination structure of single‐atom materials to optimize their activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.