Abstract

Perfect vector vortex beams (PVVBs) have attracted considerable interest due to their peculiar optical features. PVVBs are typically generated through the superposition of perfect vortex beams, which suffer from the limited number of topological charges (TCs). Furthermore, dynamic control of PVVBs is desirable and has not been reported. We propose and experimentally demonstrate hybrid grafted perfect vector vortex beams (GPVVBs) and their dynamic control. Hybrid GPVVBs are generated through the superposition of grafted perfect vortex beams with a multifunctional metasurface. The generated hybrid GPVVBs possess spatially variant rates of polarization change due to the involvement of more TCs. Each hybrid GPVVB includes different GPVVBs in the same beam, adding more design flexibility. Moreover, these beams are dynamically controlled with a rotating half waveplate. The generated dynamic GPVVBs may find applications in the fields where dynamic control is in high demand, including optical encryption, dense data communication, and multiple particle manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.