Abstract

Microscopic active droplets are of interest since they can be used to transport matter from one point to another. In this work, we demonstrate an approach to control the direction of active droplet propulsion by a photoresponsive cholesteric liquid crystal environment. The active droplet represents a water dispersion of bacterial Bacillus subtilis microswimmers. When placed in a cholesteric, a surfactant-stabilized active droplet distorts the local director field, producing a point defect-hedgehog, with fore-aft asymmetry, and allows for the chaotic motion of the bacteria inside the droplet to be rectified into directional motion. When the pitch of the cholesteric confined in a sandwich-like cell is altered by light irradiation, the droplet trajectory realigns along a new direction. The strategy allows for a non-contact dynamic control of active droplets trajectories and demonstrates the advantage of orientationally ordered media in control of active matter over their isotropic counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.