Abstract
This study addresses the question of 3D path following for the observation class underwater remotely operated vehicle. The dynamic model of the investigated remote operated vehicle is taken as a coupled multibody system composing of a flexible body and a rigid body. For precise control, the tether cable disturbance has been investigated as well via a dynamic model. Each element of the tethered cable even has been taken as an elastic body, and the waves and current disturbances have been taken into consideration. Based on the multibody system model, an adaptive backstepping sliding mode controller has been designed. To improve the controller's systematic robustness against disturbances, the sliding mode surface and adaptive control rule have been designed, too. Experiments have been performed in a tank, including the 3D path following controls of depth, heading, advance, sideway, polygon line, and spiral line. With current and wave disturbances having been taken into consideration, the tether effect has been analyzed, the efficacy and superiority of adaptive backstepping sliding mode control have been verified. It is further confirmed from the comparisons that the investigated method outperforms those S surface based controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.