Abstract
The aim of this study was to investigate the potential of texture analysis, applied to dynamic contrast-enhanced MRI (DCE-MRI), to predict the clinical and pathological response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC) before NAC is started. Fifty-eight patients with LABC were classified on the basis of their clinical response according to the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines after four cycles of NAC, and according to their pathological response after surgery. T1 -weighted DCE-MRI with a temporal resolution of 1 min was acquired on a 3-T Siemens Trio scanner using a dedicated four-channel breast coil before the onset of treatment. Each lesion was segmented semi-automatically using the 2-min post-contrast subtracted image. Sixteen texture features were obtained at each non-subtracted post-contrast time point using a gray level co-occurrence matrix. Appropriate statistical analyses were performed and false discovery rate-based q values were reported to correct for multiple comparisons. Statistically significant results were found at 1-3 min post-contrast for various texture features for the prediction of both the clinical and pathological response. In particular, eight texture features were found to be statistically significant at 2 min post-contrast, the most significant feature yielding an area under the curve (AUC) of 0.77 for response prediction for stable disease versus complete responders after four cycles of NAC. In addition, four texture features were found to be significant at the same time point, with an AUC of 0.69 for response prediction using the most significant feature for classification based on the pathological response. Our results suggest that texture analysis could provide clinicians with additional information to increase the accuracy of prediction of an individual response before NAC is started.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.