Abstract

Laser powder bed fused (LPBFed) metal alloys, such as titanium, aluminium, and steel exhibit high specific strength and hold great potential for utilization in the automotive and aerospace sectors. Since automotive and aerospace structures require the materials to withstand dynamic impacts, accurately predicting the flow behavior of LPBF-based alloys under high strain rates becomes critical. In this paper, the dynamic behavior of LPBFed CPTi, AlSi10Mg, and 316L stainless steel under strain rates of approximately 500–3000 s−1 was investigated using a Split Hopkinson Pressure Bar (SHPB). The study compared the stress-strain response and strain rate sensitivity of LPBFed alloys to those of conventionally produced counterparts. Furthermore, Johnson-Cook constitutive model was adopted to predict the flow behavior. The results showed that all alloys exhibit positive strain rate sensitivity under the tested strain rate range, with LPBFed CPTi demonstrating higher flow stress than conventionally built counterparts due to the fine grain size resulting from the additive manufacturing method. Additionally, differences in the performance of AlSi10Mg observed in this study, as compared to the literature, are attributed to differences in building direction and post-processing. Finally, it was demonstrated that the Johnson-Cook model accurately predicts flow behavior for the selected alloys with relatively low error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.