Abstract

Based on the impulsive-dynamics formulation, this article presents the analysis of different strategies to regulate the energy dissipation at the heel-strike event in the context of human locomotion. For this purpose, a seven-link 2D human-like multibody model based on anthropometric data is used. The model captures the most relevant dynamic and energetic aspects of the heel-strike event in the sagittal plane. The pre-impact mechanical state of the system, around which the analysis of the heel impact contribution to energy dissipation is performed, is defined based on published data. In the context of the proposed impulsive-dynamics framework, different realistic strategies that the subject can apply to modify the impact dynamics are proposed and analyzed, namely, the trailing ankle push-off, the torso configuration and the degree of joint blocking in the colliding leg. Detailed numerical analysis and discussions are presented to quantify the effects of the mentioned strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.