Abstract
Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g. α.τ.β.nil and α.β.nil are woc but τ.β.nil and β.nil are not. This fact prevent us from characterizing CCS semantics (when τ is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e. run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two logical characterizations via modal logic in the style of HML and a complete axiomatization for finite agents (consisting of the axioms for Strong Observational Congruence and of two of the three Milner’s τ-laws). Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.