Abstract

We study theoretically the carrier transport and the plasmonic phenomena in the gated structures with dense lateral carbon nanotube (CNT) networks (CNT “felt”) placed between the highly-conducting slot line electrodes. The CNT networks under consideration consist of a mixture of semiconducting and metallic CNTs. We find the dispersion relations for the two-dimensional plasmons, associated with the collective self-consisted motion of electrons in the individual CNTs, propagating along the electrodes as functions of the net electron density (gate voltage), relative fraction of the semiconducting and metallic CNTs, and the spacing between the electrodes. In a wide range of parameters, the characteristic plasmonic frequencies can fall in the terahertz (THz) range. The structures with lateral CNT networks can used in different THz devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.