Abstract

Non-orthogonal multiple access (NOMA) can support more users than OMA techniques using the same wireless resources, which is expected to support massive connectivity for Internet of Things in 5G. Furthermore, in order to reduce the transmission latency and signaling overhead, grant-free transmission is highly expected in the uplink NOMA systems, where user activity has to be detected. In this letter, by exploiting the temporal correlation of active user sets, we propose a dynamic compressive sensing (DCS)-based multi-user detection (MUD) to realize both user activity and data detection in several continuous time slots. In particular, as the temporal correlation of the active user sets between adjacent time slots exists, we can use the estimated active user set in the current time slot as the prior information to estimate the active user set in the next time slot. Simulation results show that the proposed DCS-based MUD can achieve much better performance than that of the conventional CS-based MUD in NOMA systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.