Abstract

Low-strength and low-impedance materials pose significant challenges in the design of experiments to determine dynamic stress-strain responses. When these materials are tested with a conventional split Hopkinson pressure bar, the specimen will not deform homogeneously and the tests are not valid. To obtain valid data, the shape of the incident pulse and the specimen thickness must be designed such that the specimens are in dynamic equilibrium and deform homogeneously at constant strain rates. In addition, a sensitive transmission bar is required to detect the weak transmitted pulses. Experimental results show that homogeneous deformations at nearly constant strain rates can be achieved in materials with very low impedances, such as a silicone rubber and a polyurethane foam, with the experimental modifications presented in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.