Abstract

Silicon carbide foam is a material that can be used as reinforcement of interpenetrated composites. This paper presents an analysis of such a foam subjected to low and fast compression. The analysis is performed using the peridynamics (PD) method. This approach allows for an evaluation of failure modes and such effects of microcracks nucleation, their growth, and, finally, fragmentation. Furthermore, the material appears to behave qualitatively and quantitatively differently while subjected to low- and high-speed steel piston movement. Under slow compression case, damage appears in the entire specimen, but the shape of the structure is not changing significantly, whereas during the fast compression the sample is dynamically fragmented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.