Abstract

BackgroundNitric oxide and prostaglandin E2 (PGE2play pivotal roles in both the pathogenesis of osteoarthritis and catabolic processes in articular cartilage. These mediators are influenced by both IL-1β and mechanical loading, and involve alterations in the inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes. To identify the specific interactions that are activated by both types of stimuli, we examined the effects of dynamic compression on levels of expression of iNOS and COX-2 and involvement of the p38 mitogen-activated protein kinase (MAPK) pathway.MethodsChondrocyte/agarose constructs were cultured under free-swelling conditions with or without IL-1β and/or SB203580 (inhibitor of p38 MAPK) for up to 48 hours. Using a fully characterized bioreactor system, constructs were subjected to dynamic compression for 6, 12 and 48 hours under similar treatments. The activation or inhibition of p38 MAPK by IL-1β and/or SB203580 was analyzed by western blotting. iNOS, COX-2, aggrecan and collagen type II signals were assessed utilizing real-time quantitative PCR coupled with molecular beacons. Release of nitrite and PGE2 was quantified using biochemical assays. Two-way analysis of variance and the post hoc Bonferroni-corrected t-test were used to examine data.ResultsIL-1β activated the phosphorylation of p38 MAPK and this effect was abolished by SB203580. IL-1β induced a transient increase in iNOS expression and stimulated the production of nitrite release. Stimulation by either dynamic compression or SB203580 in isolation reduced the IL-1β induced iNOS expression and nitrite production. However, co-stimulation with both dynamic compression and SB203580 inhibited the expression levels of iNOS and production of nitrite induced by the cytokine. IL-1β induced a transient increase in COX-2 expression and stimulated the cumulative production of PGE2 release. These effects were inhibited by dynamic compression or SB203580. Co-stimulation with both dynamic compression and SB203580 restored cytokine-induced inhibition of aggrecan expression. This is in contrast to collagen type II, in which we observed no response with the cytokine and/or SB203580.ConclusionThese data suggest that dynamic compression directly influences the expression levels of iNOS and COX-2. These molecules are current targets for pharmacological intervention, raising the possibility for integrated pharmacological and biophysical therapies for the treatment of cartilage joint disorders.

Highlights

  • The mechanical environment is an important factor that maintains articular cartilage in a healthy state

  • IL-1β activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and this effect was abolished by SB203580

  • IL-1β induced a transient increase in isoforms of the nitric oxide synthase (iNOS) expression and stimulated the production of nitrite release

Read more

Summary

Introduction

The mechanical environment is an important factor that maintains articular cartilage in a healthy state. It is well established that proinflammatory cytokines such as IL-1β act as the key mediators of cartilage breakdown and stimulate the release of nitric oxide (NO) and prostaglandin (PG)E2, via induction of inducible isoforms of the nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes [59]. COX = cyclo-oxygenase; Ct = cycle threshold; GAPDH = glyceraldehyde 3-phosphate dehydrogenase; IL = interleukin; iNOS = inducible isoforms of the nitric oxide synthase; JNK = c-Jun amino-terminal kinase; MAPK = mitogen-activated protein kinase; NF-κB = nuclear factor-κB; NO = nitric oxide; OA = osteoarthritis; PCR = polymerase chain reaction; PG = prostaglandin. These mediators are influenced by both IL-1β and mechanical loading, and involve alterations in the inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes. To identify the specific interactions that are activated by both types of stimuli, we examined the effects of dynamic compression on levels of expression of iNOS and COX-2 and involvement of the p38 mitogen-activated protein kinase (MAPK) pathway

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call