Abstract
The split Hopkinson pressure bars (SHPB) system is the most commonly employed machine to study the dynamic characteristics of different materials under high strain rates. In this research, a numerical investigation is carried out to study different bar shapes such as square, hexagonal, and triangular cross-sections and to compare them with the standard cylindrical bars. The 3D finite element model developed for circular cross-sectional shapes was first validated with the experimental results and then compared with the other proposed shapes. In most scientific research, cylindrical cross-section bars with a square cross-section specimen are traditionally used as they have several advantages, such as in situ imaging of the side surfaces of the specimen during stress wave propagation. Moreover, the flat surfaces of the proposed shapes counter the problem of debonding strain gauges, especially at high impact pressures. Comparison of the results showed an excellent confirmation of the sample dynamic behaviour and different geometric shapes of the bar geometries, which validates the choice of the appropriate system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.