Abstract
Complex systems provide an opportunity to analyze the essence of phenomena by studying their intricate connections. The networks formed by these connections, known as complex networks, embody the underlying principles governing the system’s behavior. While complex networks have been previously applied in the field of evolutionary computation, prior studies have been limited in their ability to reach conclusive conclusions. Based on our investigations, we are against the notion that there is a direct link between the complex network structure of an algorithm and its performance, and we demonstrate this experimentally. In this paper, we address these limitations by analyzing the dynamic complex network structures of five algorithms across three different problems. By incorporating mathematical distributions utilized in prior research, we not only generate novel insights but also refine and challenge previous conclusions. Specifically, we introduce the biased Poisson distribution to describe the algorithm’s exploration capability and the biased power-law distribution to represent its exploitation potential during the convergence process. Our aim is to redirect research on the interplay between complex networks and evolutionary computation towards dynamic network structures, elucidating the essence of exploitation and exploration in the black-box optimization process of evolutionary algorithms via dynamic complex networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.