Abstract

The folding pathways of viroid RNAs were studied using computer simulations by the genetic algorithm for RNA folding. The folding simulations were performed for PSTVd RNAs of both polarities, using the wild-type sequence and some previously known mutants with suggested changes in the stable or metastable structures. It is shown that metastable multihairpin foldings in the minus strand replicative intermediates are established due to the specific folding pathway that ensures the absence of the most stable rod-like structure. Simulations of the PSTVd minus strand folding during transcription reveal a metastable hairpin, formed in the left terminal domain region of the PSTVd. Despite high sequence variability, this hairpin is conserved in all known large viroids of both subgroups of PSTVd type, and is presumably necessary to guide the folding of the HPII hairpin which is functional in the minus strand. The folding simulations are able to demonstrate the changes in the balance between metastable and stable structures in mutant PSTVd RNAs. The stable rod-like structure of the circular viroid (+) RNA is also folded via a dynamic folding pathway. Furthermore, the simulations show that intermediate steps in the forced evolution of a shortened PSTVd replicon may be reconstructed by a mechanistic model of different folding pathway requirements in plus- and minus-strand RNAs. Thus the formation of viroid RNA structure strongly depends on dynamics of competition between alternative RNA structures. This also suggests that the replication efficiency of viroid sequences may be estimated by a simulation of the folding process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call