Abstract

This paper studies the dynamic column buckling of multi-walled carbon nanotubes (MWNTs) under axial impact load. The analysis is based on the continuum mechanics model and a simplified model for the van der Waals forces between adjacent layers. By introducing initial imperfections for MWNTs and applying the method of preferred mode, a buckling condition is derived for the buckling load and associated buckling mode. In particular, explicit expressions are obtained for double-walled carbon nanotubes (DWNTs). Finally, numerical calculations are worked out for a DWNT and a five-layer MWNT with different length-to-radius ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.