Abstract
The dynamic collapse response of metal self-similar hierarchical corrugated sandwich plates is analyzed. The analytical model is derived for the reaction forces of the top and bottom face sheets. Finite element analysis is conducted to investigate the dynamic collapse of the self-similar hierarchical corrugated sandwich cores. Collapse modes of cores are found compressed at different impact velocities. The analytical model captures the average reaction forces reasonably. The collapse mechanism maps are constructed with axes representing the slenderness ratio of the big and small struts for hierarchical corrugated sandwich cores and are in good agreement with numerical results. The results reveal that the increase in the velocity changes the dominant deformation modes of the collapse mechanism maps. The region of Euler buckling of small struts increases with increasing velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.