Abstract

The dynamic collapse response of metal self-similar hierarchical corrugated sandwich plates is analyzed. The analytical model is derived for the reaction forces of the top and bottom face sheets. Finite element analysis is conducted to investigate the dynamic collapse of the self-similar hierarchical corrugated sandwich cores. Collapse modes of cores are found compressed at different impact velocities. The analytical model captures the average reaction forces reasonably. The collapse mechanism maps are constructed with axes representing the slenderness ratio of the big and small struts for hierarchical corrugated sandwich cores and are in good agreement with numerical results. The results reveal that the increase in the velocity changes the dominant deformation modes of the collapse mechanism maps. The region of Euler buckling of small struts increases with increasing velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call