Abstract
Correlation filter has been demonstrated remarkable success for visual tracking recently. However, most existing methods often face model drift caused by several factors, such as unlimited boundary effect, heavy occlusion, fast motion, and distracter perturbation. To address the issue, this paper proposes a unified dynamic collaborative tracking framework that can perform more flexible and robust position prediction. Specifically, the framework learns the object appearance model by jointly training the objective function with three components: target regression submodule, distracter suppression submodule, and maximum margin relation submodule. The first submodule mainly takes advantage of the circulant structure of training samples to obtain the distinguishing ability between the target and its surrounding background. The second submodule optimizes the label response of the possible distracting region close to zero for reducing the peak value of the confidence map in the distracting region. Inspired by the structure output support vector machines, the third submodule is introduced to utilize the differences between target appearance representation and distracter appearance representation in the discriminative mapping space for alleviating the disturbance of the most possible hard negative samples. In addition, a CUR filter as an assistant detector is embedded to provide effective object candidates for alleviating the model drift problem. Comprehensive experimental results show that the proposed approach achieves the state-of-the-art performance in several public benchmark data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.