Abstract

Opportunistic mobile networks, as an important supplement to the traditional communication methods in unique environments, are composed of mobile communication devices. It is a network form that realizes message transmission by using the opportune encounter of these mobile communication devices. Consequently, mobile communication devices necessitate periodic contact detection in order to identify potential communication opportunities, thereby leading to a substantial reduction in the already limited battery life of such devices. Previous studies on opportunistic networks have often utilized geographic information in routing design to enhance message delivery rate. However, the significance of geographic information in energy conservation has been overlooked. Furthermore, previous research on energy-efficient routing has lacked diversification in terms of the methods employed. Therefore, this paper proposes a dynamic co-operative energy-efficient routing algorithm based on geographic information perception (DCEE-GIP) to leverage geographic information to facilitate dynamic co-operation among nodes and optimize node sleep time through probabilistic analysis. The DCEE-GIP routing and other existing algorithms were simulated using opportunistic network environment (ONE) simulation. The results demonstrate that DCEE-GIP effectively extends network service time and successfully delivers the most messages. The service time of DCEE-GIP increased by 8.05∼31.11%, and more messages were delivered by 14.82∼115.9%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call