Abstract

Cloud service selection in a multi-cloud computing environment is receiving more and more attentions. There is an abundance of emerging cloud service resources that makes it hard for users to select the better services for their applications in a changing multi-cloud environment, especially for online real time applications. To assist users to efficiently select their preferred cloud services, a cloud service selection model adopting the cloud service brokers is given, and based on this model, a dynamic cloud service selection strategy named DCS is put forward. In the process of selecting services, each cloud service broker manages some clustered cloud services, and performs the DCS strategy whose core is an adaptive learning mechanism that comprises the incentive, forgetting and degenerate functions. The mechanism is devised to dynamically optimize the cloud service selection and to return the best service result to the user. Correspondingly, a set of dynamic cloud service selection algorithms are presented in this paper to implement our mechanism. The results of the simulation experiments show that our strategy has better overall performance and efficiency in acquiring high quality service solutions at a lower computing cost than existing relevant approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.