Abstract
Tethered space net robot (TSNR) is treated as one of the most promising space debris capturing methods. To perform a successful net capture mission, it is necessary to determine the net closing point for four maneuvering units to make the net fully close around the debris. In the previous studies, a fixed point (FP) is provided as the position for maneuvering units to converge. However, the FP cannot be easily given, especially for the situation that the debris does not contact in the center of the net and the debris in the state of tumbling. In this article, we propose a method to determine the “dynamic closing point” (DCP), which is a dynamic position moving with the motion of the four maneuvering units and suitable for maneuvering units to converge. First, the dynamic model of TSNR is derived. Then, the “DCP” is defined based on the position of the four maneuvering units. Taking a cylindrical target as the example, the DCP and FP are chosen as the different net closing methods to show the net closing performance of TSNR. The simulation results verify that the proposed DCP is more efficient and fuel-saving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.