Abstract

This paper addresses dynamic classification of different ranges of ballistic missiles (BM) for air defense application based on kinematic attributes acquired by radars for taking appropriate measures to intercept them. The problem of dynamic classification is formulated using real-time neural network (RTNN) and hidden Markov model (HMM). The idea behind these algorithms is to calculate the output in one pass rather than training and computing over large number of iterations. Besides, to meet the conflicting requirements of classifying small as well as long-range trajectories, we are also proposing a formulation for partitioning the trajectory by using moving window concept. This concept allows us to use parameters in localized frame which helps in handling wide-range of trajectories to fit into the same network. These algorithms are evaluated using the simulated data generated from 6 degree-of-freedom (6DOF) mathematical model, which models missile trajectories. Experimental results show that both the networks are classifying above 95% with real-time neural network outperforming HMM in terms of time of computation on same data. The small classification time enables the use of real-time classification neural network in complex scenario of multi-radar, multi-target engagement by interceptor missiles. To the best of our knowledge this is the first time an attempt is made to classify ballistic missiles using RTNN and HMM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.