Abstract

Majority-logic algorithms are devised for decoding non-binary LDPC codes in order to reduce computational complexity. However, compared with conventional belief propagation algorithms, majority-logic algorithms suffer from severe bit error performance degradation. This paper presents a low-complexity reliability-based algorithm aiming at improving error correcting ability of majority-logic algorithms. Reliability measures for check nodes are novelly introduced to realize mutual update between variable message and check message, and hence more efficient reliability propagation can be achieved, similar to belief-propagation algorithm. Simulation results on NB-LDPC codes with different characteristics demonstrate that our algorithm can reduce the bit error ratio by more than one order of magnitude and the coding gain enhancement over ISRB-MLGD can reach 0.2-2.0dB, compared with both the ISRB-MLGD and IISRB-MLGD algorithms. Moreover, simulations on typical LDPC codes show that the computational complexity of the proposed algorithm is closely equivalent to ISRB-MLGD algorithm, and is less than 10% of Min-max algorithm. As a result, the proposed algorithm achieves a more efficient trade-off between decoding computational complexity and error performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.