Abstract

Monitoring the evolution of the CO2 plume during geologic storage is essential for conformance, verification, and risk assessment and mitigation. Monitoring data also play a critical role in characterizing the storage formation and improving the reliability of predictive models. We investigate the feasibility of using the ensemble Kalman filter (EnKF) data assimilation framework to estimate the hydraulic properties of storage formations and to predict the migration of CO2 plume from monitoring measurements, including transient pressure and saturation data at scattered wells and time-lapse seismic data (modeled as vertically-averaged saturation differences in time). To properly account for the uncertainty in the knowledge about saline aquifer properties, the initial ensemble of formation properties is generated based on uncertain statistical model (variogram) parameters. While integration of data from scattered wells provides limited improvement in reducing the uncertainty in the initial ensemble, assimilation of time-lapse seismic measurements (represented by vertically-averaged saturation differences in time) with the EnKF leads to more noticeable uncertainty reduction and reasonable estimates of the general connectivity trends in aquifer hydraulic properties. The estimation and sensitivity analysis results suggest important differences in filter performance during and after CO2 injection. This difference is attributed to the change in flow behavior and the dominant forces before and after injection (pressure versus gravitational forces, respectively). Additionally, when prior model realizations miss essential flow-related elements (e.g., fractures) in an aquifer, the filter provides out-of-range updates, which could be interpreted as a systematic problem in the filter design, in this case possible inconsistency in the prior models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.