Abstract

This paper attempts to describe the dynamic behavior of expanded polystyrene EPS geofoam, and shows the dependence of shear modulus, G, and damping ratio, λ, on shear strain, γ, density, ρ, and confining stress, σ 3, through the results of a series of resonant column and strain- and stress-controlled cyclic compression tests. Shear modulus and damping ratio versus shear strain curves were obtained and a series of equations were developed to model the dynamic behavior of EPS. From stress-controlled cyclic compression tests the effect of the number of cyclic load applications, N, on the maximum axial strain ɛ max (for a specific static deviator stress, σ e, plus the amplitude of the loading cyclic stress, σ c) and on the dynamic modulus of elasticity E dyn was evaluated as a function of the EPS density, confining stress, and the applied cyclic stress amplitude σ c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.