Abstract
ABSTRACT This paper focuses on the dynamic characteristics of wheel–rail collision vibration for high-speed train under crosswind. The wind load model is established by using fast Fourier transform harmonic synthesis method and Davenport coherence function, the lateral displacement of wheelset of high-speed train under crosswind is calculated, the dynamic model of wheel–rail collision vibration system of high-speed train under crosswind is established. The effects of vibration frequency, wheel–rail clearance and lateral damping on the characteristics of wheel–rail lateral clearance impact vibration system of high-speed train are discussed. Numerical simulation results show that the impact velocity of wheelset collision on left and right rails increases with the increase of vibration frequency. When ω > 3.3, the system changes from chaos state to single period stable state through inverse doubling bifurcation; when b < 0.0033, it is in a chaos state, and with the increase of b, the inverse doubling bifurcation occurs until the hunting motion of the wheel–rail system is in a stable state; when , the system is in a stable single period operation state, and with the continuous increase of , it begins to have hop bifurcation, enters a multi-period and chaos state, and finally it is in a stable single period operation state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.