Abstract
Due to their exceptional impact resistance capabilities, density-graded cellular materials have immense potential in applications where crashworthiness requirements are of prime importance. Under impact loading, the deformation in these materials is characterized by compaction front propagation. Previous studies have utilized numerical techniques to solve the equations governing compaction shock propagation for cellular materials with density gradation. In this study, analytical solutions are formulated using compaction front position as the independent variable. The expressions for the velocity of the impinging rigid mass, energy absorption, incident stress, and transmitted stress are determined. The analytical solutions are shown to be in excellent agreement with the cell-based finite element solutions. The effect of density gradient on energy absorption and stresses is studied. The impact resistance factor is employed to assess different density-graded cellular materials for their effectiveness in impact mitigation. This study demonstrates that density-graded cellular materials can offer superior impact protection to objects at both the incident and transmitted ends. Lower density toward the incident end enhances impact resistance to objects located there, and likewise, lower density at the transmitted end offers more impact resistance to objects at that end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.