Abstract

The harmonic vibration characteristics of a deeply buried spherical methane tank in viscoelastic soil subjected to cyclic loading in the frequency domain are investigated. The dynamic behavior of the soil is described based on the theory of fractional derivatives. By introducing potential functions, the closed-form expressions for the displacement and the stress of the viscoelastic soil surrounding the deeply buried spherical methane tank are obtained. Two die structures are considered: a homogeneous elastic medium and a shell structure. Based on the theory of elastic motion and the Flügge theory, analytic solutions for the dynamic responses of the spherical methane tank in a fractional-derivative viscoelastic soil are derived explicitly. Analytic solution expressions of the undetermined coefficients are determined by using the continuum boundary conditions. The system dynamic responses to the homogeneous elastic medium and the shell structure and the influences of the parameters of the fractional derivative, soil, and die on the dynamic characteristic of the system are compared and analyzed. The results indicate a significant difference between the dynamic responses of the die structures for the two models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.