Abstract

The viscoelastic damping model of the cylindrical hybrid panels with co-cured, free and constrained layers has been developed and investigated by using the refined finite element method based on the layerwise shell theory. The transverse shear and normal strains and the curved geometry are exactly taken into account in the present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The damped natural frequencies, modal loss factors and frequency response functions of cylindrical viscoelastic hybrid panels are compared with those of the base composite panel without a viscoelastic layer. The difference in the free vibration and damping of the thin and thick composite laminates and the viscoelastic sandwiched beam between full and partial layerwise theories is verified by comparison with the published results. Various damping characteristics of cylindrical hybrid panels with free viscoelastic layer, constrained layer damping, and co-cured sandwich laminates are investigated. Present results show that the full layerwise damping model accurately predicted the vibration and damping of the cylindrical hybrid panels with viscoelastic layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call