Abstract

SUMMARYThe mass balancing of robotic manipulators has been shown to have favorable effects on the dynamic characteristics. In actual practice, however, since conventional manipulators have flexibility at their joints, the improved dynamic properties obtainable for rigid manipulators may be influenced by those joint flexibilities. This paper investigates the effects of the joint flexibility on the dynamic properties and the controlled performance of a balanced robotic manipulator. The natural frequency distribution and damping characteristics were investigated through frequency response analyses. To evaluate the dynamic performance a series of simulation studies of the open loop dynamics were made for various trajectories, operating velocities, and joint stiffnesses. These simulations were also carried out for the balanced manipulator with a PD controller built-in inside motor control loop. The results show that, at low speed, the joint flexibility nearly does not influence the performance of the balanced manipulator, but at high speed it tends to render the balanced manipulator susceptible to vibratory motion and yields large joint deformation error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.