Abstract

Considering rotation-induced centrifugal stiffening, spin softening, and Coriolis effects, the reduced dynamic model of a rotating blade with a dovetail fixture is established in the ANSYS environment via the fixed-interface method for higher computational efficiency and lower memory consumption. Then some parameters such as rotating speed, friction factor, and stator blade number affecting the nonlinear vibration responses of the system under the combined actions of aerodynamic force, centrifugal force, and gravity are elaborately discussed. The results show that: (1) the contact-induced nonlinearity between the tenon and the mortise mainly results in the frequency multiplications of the aerodynamic excitation frequency; (2) a larger friction factor results in a lower magnitude of contact pressure and a higher resonance frequency, while a larger stator blade number results in a lower magnitude of the uniform and continuous contact pressure distribution; (3) the excitation of the resonant mode caused by the aerodynamic force is primarily characterized by the first-order bending mode of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.