Abstract

The dynamic characteristics of cylindrical textured hydrodynamic journal bearing are presented in this paper. The Reynolds equation is solved numerically in a finite difference grid in an iterative scheme satisfying the appropriate boundary conditions. Stiffness and damping coefficients of fluid film and stability parameter are found using the first-order perturbation method for different eccentricity ratios and various texture parameters like texture depth and texture density.. From the present analysis, it has been found that stability is enhanced with increase in texture depth, whereas there is an optimum texture density corresponding to the maximum stability of the bearing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call