Abstract

Hydrogen starvation during a start-up process in proton exchange membrane (PEM) fuel cells could result in drastic local current density variations, reverse cell voltage and irreversible cell damages. In this work, variations of local current densities and temperatures are measured in situ under both potentiostatic and galvanostatic modes. Experimental results show that when the cell starts up under potentiostatic mode with hydrogen starvation, current density undershoots occur in the downstream; while under the galvanostatic mode, local current density in the downstream almost drops to zero, but the current density near the outlet remains almost constant. The phenomenon of near constant current density near the outlet leads to a novel approach to alleviate hydrogen starvations - a hydrogen reservoir is added at the anode outlet. Experimental results show that the exit hydrogen reservoir can significantly reduce the zero current region and alleviate hydrogen starvations. A non-dimensional current-density variation coefficient is proposed to measure the magnitude of local current density changes during starvations. Experimental results show that the exit hydrogen reservoir can significantly reduce the current-density variations coefficient over the entire flow channel, indicating that adding an exit reservoir is an effective approach in mitigating hydrogen starvations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call