Abstract

In this study, a new four-unknown quasi-3D shear deformation theory is proposed for studying the vibration responses of functionally graded (FG) beams containing open-edge cracks resting on three-parameter viscoelastic foundations (VEFs). The number of unknowns and governing equations in the current theory has been reduced, making it easier to use. Even less than conventional theories, this theory includes indeterminate integral variables and contains only four unknowns where no shear correction factor is used. The study is conducted with an eye toward a three-parameter foundation that takes into account the effects of the elastic medium’s damping coefficient, the Pasternak coefficient, and the Winkler coefficient. The material characteristics of the FG beams are considered to vary in the thickness direction via a power law distribution as a function of the volume fractions of the constituents. The system of differential equations governing the free vibration behavior of FG beams is derived by Hamilton’s principle. To satisfy the foundation conditions, the Navier method is used to obtain the analytical solutions of the dynamic response of cracked FG beams resting on viscoelastic foundations. Comparison of the results of the current theory with other results and with data available in the literature demonstrates its accuracy. A detailed parametric study is presented to show the impact of material properties, slenderness ratio, foundation type and foundation damping coefficient, crack depth, and location on the natural frequencies of cracked FG beams resting on VEFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call