Abstract

Ultrasonic absorption coefficients in the frequency range of 0.8-220 MHz have been measured in aqueous solution of amitriptyline (3-(10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5-ylidene)-N,N-dimethyl-1-propanamine) in the concentration range from 0.20 to 0.60 mol dm(-3) at 25 °C. A single relaxational phenomenon has been observed, and the relaxation frequency is independent of the concentration. It has been also observed that the amplitude of the relaxational absorption increases linearly with the analytical concentration. From these ultrasonic relaxation data, it has been concluded that the relaxation is associated with a unimolecular reaction due to a conformational change of the solute molecule, such as a structural change due to a rotational motion of a group in the solute molecule. Molecular orbital semiempirical methods using AM1 (Austin model 1) and PM3 (modified neglect of diatomic overlap parametric method 3) have been applied to obtain the standard enthalpy of formation for amitriptyline molecule at various dihedral angles around one of the bonds in alkylamine side chain. The results have shown the two clear minimum standard enthalpies of formation for amitriptyline. From the difference of the two values, the standard enthalpy change between the two stable conformers has been calculated be 2.9 kJ mol(-1). On a rough assumption that the standard enthalpy change reflects the standard free energy change, the equilibrium constant for the rotational isomers has been estimated to be 0.31. Combining this value with the experimental ultrasonic relaxation frequency, the backward and forward rate constants have been evaluated. The standard enthalpy change of the reaction has been also estimated from the concentration dependence of the maximum absorption per wavelength, and it has been close to that calculated by the semiempirical methods. The ultrasonic absorption measurements have been also carried out in amitriptyline solution in the presence of β-cyclodextrin. However, the ultrasonic relaxation has not been found in the above frequency range. The result has been discussed in relation to the host-guest complex formation between β-cyclodextrin and amitriptyline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call