Abstract
To elucidate the toxic mechanism of snake venom at the protein level, proteomics technology was applied to investigate the effect of venom on circulation in the mammalian body. Temporal proteomic analysis was performed to profile the dynamic changes in the sera of Sprague–Dawley rats administered with Chinese cobra venom or saline. Using 8-plex iTRAQ analysis, 392 and 636 serum proteins were identified to be linearly upregulated or downregulated over time in the low-dose group and high-dose group, respectively. These proteins were mainly associated with the acute phase response pathway, complement system, and liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR)/RXR activation pathways. Compared with the low-dose group, the immune response and integrin pathways were inhibited in the high-dose group, although no obvious effect was observed. With consistently higher or lower expression in the high-dose group compared to the low-dose group throughout the whole process of venom poisoning, two proteins, Kininogen-1 (KNG1) and orosomucoid 1 (ORM1), which are involved in metabolism and immune response, occupied a core position in the pathway network and are considered venom dose-dependent biomarker candidates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.