Abstract

The dynamic changes of microbiota assessed by high-throughput sequencing and texture properties of handmade cheese were investigated during ripening time. Streptococcus and Lactococcus were found to be the most predominant genera. The proportion of Streptococcus was decreased from 48 to 32% and the proportion of Lactococcus was increased from 41 to 55% with ripening time from 1 to 120 days. Mould and yeast such as Paecilomyces, Candida, Issatchenkia, Rhodotorula, Cryptococcus and Trichosporon were observed. The regression analysis between composition and textural properties indicated that the hardness was increased along with the rising of soluble nitrogen, while the increased soluble nitrogen could result in lower cohesiveness, and the increased fat in dry matter resulted in lower resilience. The physic-chemical parameters were correlated with secondary microbiota such as Cryptococcus and Candida according to the multivariate association analysis (p < 0.05). These findings could provide a baseline to improve the product quality and preserve the traditional characteristics of handmade cheese.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call