Abstract
The aim of this study was to investigate the dynamic changes in the microbial communities of both the environment and gut of Litopenaeus vannamei, as well as to elucidate the mechanisms underlying microbial community assembly in greenhouse farming. 16S rDNA high-throughput sequencing and bioinformatics methods were used to carry out the research on the community structure of the microorganisms under greenhouse culture conditions in water, sediment, and gut microorganisms; correlations pertaining to environmental factors; the feasibility of using Source Tracker; and the mechanisms of community construction. The results show that the dominant microorganisms in water, sediment, and gut farming in a greenhouse environment varied and were subject to dynamic change. A variety of beneficial microbiota such as Bacillus were found in the gut, whereas a variety of microorganisms such as Marivita and Pseudomonas, which function as nitrogen and phosphorus removers, were present in water. Source Tracker and environmental correlation analyses showed that changes in the gut were associated with eutrophication indicators (total nitrogen, total phosphorus, ammonia nitrogen) and changes in environmental microorganisms (in water and sediment). The results of the community-building mechanism analysis show that stochastic processes determine the community-building directions of environmental and gut microorganisms. These findings will help us to understand the microbiota characteristics of shrimp ponds under greenhouse farming conditions, and the complex interactions between the shrimp gut and the environmental microbiota and environmental variables, as well as revealing the changing rules of the gut microbiota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.