Abstract

Microcosm experiments were carried out to study the effects of bacterial-feeding nematodes and prometryne on soil bacterial communities in contaminated soil. Prometryne (5 or 10mgkg−1 dry soil, that is, P5 or P10) and bacterial-feeding nematodes (5 or 10 individuals g−1 dry soil, that is, N5 or N10), singly and in combination (P5N5, P5N10, P10N5, P10N10), were added to a nematode-free soil. An uncontaminated nematode-free soil was studied for comparison (Control). Bacterial-feeding nematode grazing boosted soil enzyme activities in contaminated soils, thus speeding up prometryne degradation. In the initial stage of the experiment, prometryne enhanced the soil enzyme activities too, but served the opposite purpose later. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that prometryne contamination and nematode grazing over the incubation period exerted an obvious impact on Species richness (S), Shannon–Wiener index (H′) and Evenness (EH) of soil bacteria, which increased initially, then decreased and increased again later. The cluster analysis of DGGE profiles showed that the similarity of soil bacterial communities in all treatments with indigenous microbes, P5, P5N5, P5N10, P10, P10N5, and P10N10 and the Control was 75%, 44%, 78% and 49% at Day 0, Day 8, Day 18 and Day 30, respectively. Compared to the Control, DGGE profiles displayed a varying characteristic bands pattern in all treatments over the incubation period with certain bands present in the treatments while not in the Control and vice versa, suggesting that bacterial-feeding nematode grazing and prometryne contamination affected soil bacterial communities evidently. Consequently, when added to contaminated soil, bacterial-feeding nematodes can contribute to restoration of contaminated sites by degrading toxic compounds like prometryne through enhanced microbial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.