Abstract

The influence of frying times (0, 2, 4, 6, 8, and 10 min) on the continuous changes in the water distribution and the concentrations of key volatile compounds in chicken breast during the frying process were studied. The fried chicken samples could be distinguished by PCA of E-nose and PLS-DA of GC–MS. A total of 40 volatile compounds were identified by GC–MS, and 28 compounds were verified to be the key compounds after further screening by OAVs. The T22 was increased first and then decreased, while the M22 and M23 in fried chicken were considerably decreased and increased with increasing frying time, respectively. The content of the water and the total peak area of LF-NMR in fried chicken samples during the frying process significantly decreased, and the water was transferred from high to low degrees of freedom. In addition, water content, T21, T22, M22 and L* value were positively correlated with most alcohols and aldehydes, and were negatively correlated with pyrazines, while a*, b*, M23 and all amino acids were positively correlated with pyrazines and were negatively correlated with most alcohols and aldehydes. The results may guide the production processes of fried chicken and help produce high-quality chicken products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call