Abstract

Microwave ablation (MWA) is a minimally invasive technique for treating lung cancer. It can induce immune response; however, its effect on the immune microenvironment in tumor-draining lymph nodes (TdLN) is not well understood. This study aims to identify changes in the immune microenvironment in TdLN following MWA in a Lewis lung cancer (LLC) mouse model. LLC mouse model was established and followed by MWA. TdLN were collected at various time points, including pre-MWA and days 1, 2, 4, and 8 post-MWA. Flow cytometry was used to determine the frequencies of CD4+ T cells, CD8+ T cells, regulatory T (Treg) cells, natural killer (NK) cells, dendritic cells (DCs) and other immune cells in the TdLN. Certain cytokines were also detected. Compared with pre-MWA, the frequency of CD4+ T cells significantly increased from day 1 to day 8 post-MWA. The frequency of CD8+ T cells decreased significantly on days 2 and 4, but no significant changes occurred on days 1 and 8. Significant decreases in the frequencies of Treg cells and Klrg1+ Treg cells were observed from day 1 to day 4. On days 4 and 8, there was a significant increase in the frequency of NK cells. The frequency of resident cDC2 significantly increased on day 4, whereas CD11b+ migratory cDCs increased on day 1. Additionally, on day 4, a notable rise was observed in the frequency of NK cells secreting IFN-γ, while on day 8, there was a significant increase in the frequency of CD8+ T cells secreting both IFN-γ and TNF-α. MWA of lung cancer can alter the immune microenvironment in the TdLN, triggering immune responses. These changes are particularly evident and intricate within the initial 4 days post-MWA. Treatment combined with MWA within a certain period may significantly enhance anti-tumor immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.