Abstract

Robos are transmembrane receptors that mediate Slit signaling to repel growth cone outgrowth and neural migration in the developing central nervous system. Their distribution and function in the peripheral nervous system remains unclear. In the present study, we examined expression of Slit1 and Robo2 in adult rat dorsal root ganglion (DRG), spinal cord and sciatic nerve after peripheral nerve injury (axotomy). In control rats, Slit1 and Robo2 mRNA and protein were expressed at basic levels in the L5 and L6 DRGs. Sciatic transection resulted in a significant up-regulation of both Robo2 and Slit1 mRNA and protein ( p < 0.05 versus control). The peak of Slit1 and Robo2 expression occurred at days 7 and 14, respectively, and returned to control levels at days 28 and 21 post-axotomy, respectively. By contrast, injury to the central axons of the DRG by dorsal rhizotomy did not up-regulate Slit1 and Robo2 expression. Robo2 staining was stronger in small diameter neurons than in large diameter neurons in control DRG. Interestingly, post-axotomy, Robo2 immunostaining increased in the large diameter neurons and the number of Robo2 positive large diameter neurons increased significantly relative to controls. Non-neuronal cells surrounding the primary sensory neurons, including the satellite cells, were Slit1-positive, and Slit1 protein was expressed in the myelin sheath and non-neural cells in both intact and degenerating sciatic nerve axons. Sciatic nerve transection also led to an accumulation of Slit1 protein in peripheral region of the traumatic neuroma. In conclusion, we report an altered expression and redistribution of Robo2 and Slit1 in the DRG and sciatic nerve trunk after peripheral axotomy. Our results indicate that Slit1 and Robo2 likely play an important role in regeneration after peripheral nerve injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.