Abstract

IntroductionProbiotics and prebiotics are widely used for recovery of the human gut microbiome after antibiotic treatment. High antibiotic usage is especially common in children with developing microbiome. We hypothesized that dry Mare’s milk, which is rich in biologically active substances without containing live bacteria, could be used as a prebiotic in promoting microbial diversity following antibiotic treatment in children. The present pilot study aims to determine the impacts of dry Mare’s milk on the diversity of gut bacterial communities when administered during antibiotic treatment and throughout the subsequent recovery phase.MethodsSix children aged 4 to 5 years and diagnosed with bilateral bronchopneumonia were prescribed cephalosporin antibiotics. During the 60 days of the study, three children consumed dry Mare’s milk whereas the other three did not. Fecal samples were collected daily during antibiotic therapy and every 5 days after antibiotic therapy. Total DNA was isolated and taxonomic composition of gut microbiota was analyzed by 16S rRNA amplicon sequencing. To assess the immune status of the gut, stool samples were analyzed by bead-based multiplex assays.ResultsMare’s milk treatment seems to prevent the bloom of Mollicutes, while preventing the loss of Coriobacteriales. Immunological analysis of the stool reveals an effect of Mare’s milk on local immune parameters under the present conditions.

Highlights

  • Probiotics and prebiotics are widely used for recovery of the human gut microbiome after antibiotic treatment

  • Children were randomly assigned to a group which, along with standard therapy, received this auxiliary treatment in the form of reconstructed freeze-dried mare’s milk, which is encoded as MM (MM = mare’s milk) or to the control group, given antibiotics only (AB)

  • Cephalosporin treatment led to a profound gut bacterial depletion

Read more

Summary

Introduction

Probiotics and prebiotics are widely used for recovery of the human gut microbiome after antibiotic treatment. We hypothesized that dry Mare’s milk, which is rich in biologically active substances without containing live bacteria, could be used as a prebiotic in promoting microbial diversity following antibiotic treatment in children. The present pilot study aims to determine the impacts of dry Mare’s milk on the diversity of gut bacterial communities when administered during antibiotic treatment and throughout the subsequent recovery phase. Advances in studies of the human microbiome have shown that homeostasis of the intestinal microbiota is critical to maintaining health, especially in a developing organism. Antibiotics of various pharmacological groups have different effects on the composition and function of intestinal bacteria and lead to different consequences. Destabilization leads to the disruption of interactions in the colonocyte-microbiota system, a decrease in the protective properties of the mucin layer and, as a consequence of these factors, a decrease in the colonization resistance of the microbiota with concomitantly increased risk for the growth of an opportunistic/pathogenic flora (Asha et al, 2006; Högenauer et al, 2006)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call