Abstract

BackgroundMembrane lipid composition associates closely with membrane stability and fluidity under water stress. In this study, lipidomic analyses based on electrospray ionization mass spectrometry (ESI-MS/MS) were carried out to explore dynamic changes of membrane lipids in term of molecular species caused by PEG (Polyethylene glycol-6000)-induced water stress in wheat seedlings.ResultsAmong the main phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) are primary degradation targets, and PC was degraded in the largest degree. Membrane ion leakage dramatically increased later than the significant reduction of these phospholipids, indicating that the loss of membrane integrity lagged behind severe phospholipid degradation. Monogalactosyldiacylglycerol (MGDG) increased firstly and decreased later, while digalactosyldiacylglycerol (DGDG) ratcheted up with stress. DGDG/MGDG increased after stress for 3 days, and unsaturation of DGDG was promoted with stress. Variation trends of galactolipids differed among molecular species. The time when MGDG (34:3), DGDG (34:3) began to decline approached to the time when non-stomatal limitation impaired photosynthesis. While the two predominant molecular species MGDG (36:6) and DGDG (36:6) began to decline later. So we speculated that MGDG (34:3), DGDG (34:3) might be key components in photosynthesis apparatus and participate in photosynthesis directly. While the two predominant molecular species, MGDG (36:6) and DGDG (36:6) might locate in thylakoid lipid bilayer matrix and play roles in stabilizing the membrane. The research provides new insights into the dynamic response of lipid metabolism to PEG-induced water stress.ConclusionIn wheat plants under water stress, the major molecular species of PC, PE and PG were degraded, MGDG and DGDG molecular species had differing degradation time courses.

Highlights

  • Membrane lipid composition associates closely with membrane stability and fluidity under water stress

  • Cellular membrane ion leakage increased with time of water stress As well known, stress severity is determined by both stress intensity and stress time

  • It deserves to be mentioned that differing from the 4 classes of phospholipids above, none of the main molecular species of PS showed a clear downward trend, implying that PS was not the main phospholipid degraded under water stress

Read more

Summary

Introduction

Membrane lipid composition associates closely with membrane stability and fluidity under water stress. Lipidomic analyses based on electrospray ionization mass spectrometry (ESI-MS/MS) were carried out to explore dynamic changes of membrane lipids in term of molecular species caused by PEG (Polyethylene glycol-6000)-induced water stress in wheat seedlings. Phospholipids are the main structural components of cellular membranes. Various abiotic stresses, such as drought, salt, and freezing, activate distinct phospholipases, and distinct isoforms of each phospholipase. The composition of molecular species of each lipid class, which shares a head group but differs in chain length and doublebond number, change in response to stresses [5]. Lipid composition has an important influence on the integrity of cellular membrane and on the intrinsic-membrane protein activities under stresses [10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call