Abstract

The 'histone-code' hypothesis proposes that cell fate 'decisions' are achieved through the creation of stable epigenetic histone 'marks' at gene loci. Here we explored the formation of marks of repressive methylation of histone 3 at lysine 9 (H3-K9) and of H3-K27 at the locus encoding interferon-gamma (Ifng locus) during the commitment of naive T cells to the T helper type 1 (TH1) and TH2 lineages. Methylation of H3-K9 across the Ifng locus was rapidly induced in differentiating TH1 and TH2 cells and was sustained in TH1 cells. In contrast, TH2 differentiation caused loss of methylation of H3-K9 and gain of methylation of H3-K27 by mechanisms dependent on the transcription factors GATA-3 and STAT6. Thus, histone-methylation marks at the Ifng locus are highly dynamic, which may ensure higher-order transcriptional regulation during early lineage commitment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.