Abstract

3-methylcholanthrene (MCA) and diethylnitrosamine (DEN) are typical genotoxic carcinogens that can induce tumors in a variety of human and rodent tissues. However, the epigenetic mechanisms underlying their tumorigenesis are unclear. In this study we used a MCA/DEN-induced multistep lung carcinogenesis rat model to study the evolution of alterations in DNA methylation. Rats were treated with a single dose of MCA and DEN in iodized oil by left intra-bronchial instillation. The animals were killed on days 15, 35, 55, 65 and 75 and samples of various pathological phases during carcinogenesis were obtained on these days. The status of global methylation was analyzed for each sample using a monoclonal antibody specific for 5-methycytosine (5-mC) and quantified by image analysis software. We found that the degree of global methylation was, in general, higher in basal cells compared to luminal cells of normal, precancerous and tumor tissues. The combined 5-mC scores of different types of tissues decreased gradually during the progression of carcinogenesis. We also used methylation-sensitive arbitrarily primed PCR (MS-AP-PCR) to screen a total of eight differentially methylated DNA fragments in both precancerous and tumor tissues isolated using laser capture microdissection (LCM), and observed that both unique hypomethylation and hypermethylation fragments coexist after exposure to genotoxic carcinogens. Remarkably, epigenetic alterations in p16 (CDKN2A), but not in p15 (CDKN2B), were observed, and these correlated with the presence of pathologic lung lesions and loss of p16 protein expression. Moreover, defective expression of p16 in methylated primary tumor cell lines recovered markedly after treated with 5-aza-2'-deoxycytidine (5-aza-dC). These results suggest that DNA methylation alterations are an early event in tumorigenesis and play an important role during MCA/DEN-induced multistep rat lung carcinogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.