Abstract

Sleep and brain glutamatergic signaling are homeostatically regulated. Recovery sleep following prolonged wakefulness restores efficient functioning of the brain, possibly by keeping glutamatergic signaling in a homeostatic range. Evidence in humans and mice suggested that metabotropic glutamate receptors of subtype-5 (mGluR5) contribute to the brain’s coping mechanisms with sleep deprivation. Here, proton magnetic resonance spectroscopy in 31 healthy men was used to quantify the levels of glutamate (Glu), glutamate-to-glutamine ratio (GLX), and γ-amino-butyric-acid (GABA) in basal ganglia (BG) and dorsolateral prefrontal cortex on 3 consecutive days, after ~8 (baseline), ~32 (sleep deprivation), and ~8 hours (recovery sleep) of wakefulness. Simultaneously, mGluR5 availability was quantified with the novel radioligand for positron emission tomography, [18F]PSS232, and the blood levels of the mGluR5-regulated proteins, fragile X mental retardation protein (FMRP) and brain-derived neurotrophic factor (BDNF) were determined. The data revealed that GLX (p = 0.03) in BG (for Glu: p < 0.06) and the serum concentration of FMRP (p < 0.04) were increased after sleep loss. Other brain metabolites (GABA, N-acetyl-aspartate, choline, glutathione) and serum BDNF levels were not altered by sleep deprivation (pall > 0.6). By contrast, the night without sleep enhanced whole-brain, BG, and parietal cortex mGluR5 availability, which was normalized by recovery sleep (pall < 0.05). The findings provide convergent multimodal evidence that glutamatergic signaling is affected by sleep deprivation and recovery sleep. They support a role for mGluR5 and FMRP in sleep–wake regulation and warrant further studies to investigate their causality and relevance for regulating human sleep in health and disease.Clinical Trial Registration: www.clinicaltrials.gov (study identifier: NCT03813082)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.