Abstract

Selective catalytic reduction of NOx by ammonia (NH3-SCR) on V2O5/TiO2 catalysts is a widely used commercial technology in power plants and diesel vehicles due to its high elimination efficiency for NOx removal. However, the mechanistic aspects of the NH3-SCR reaction, especially the active sites on the V2O5/TiO2 catalysts, are still a puzzle. Herein, using combined operando spectroscopy and density functional theory calculations, we found that the reactivity of the Lewis acid site was significantly overestimated due to its conversion to the Brønsted acid site. Such interconversion makes it challenging to measure the intrinsic reactivity of different acid sites accurately. In contrast, the abundant V-OH Brønsted acid sites govern the overall NOx reduction rate in realistic exhaust containing water vapor. Moreover, the vanadia species cycle between V5+═O and V4+-OH during NOx reduction, and the re-oxidation of V4+ species to form V5+ is the rate-determining step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call